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Abstract—An analytic solution has been developed for steady laminar two-dimensional conjugated heat
transfer across a rectangular block with constant internal heat source and subjected to forced convection
on top, different thermal boundary conditions at the sides, and adiabatic wall condition at the bottom.
The idealized problem solution is of interest in the basic analysis of single-block cooling. Numerical results
presented illustrate the effects of the Peclet number, conductivity ratio and type of thermal boundary
condition on the temperature profiles and heat flux distributions along the upper surface of the block.

1. INTRODUCTION

THE PROBLEM of heat transfer from a heated block
subjected to convective cooling at its upper sur-
face is of interest in numerous engineering applica-
tions including electronic equipment cooling, heat
exchangers, material processing and thermal building
assessment. A number of relevant papers employing
analytic or approximate methods have been published
in recent years [1-7]. Luikov [1] considered heating
of a thin flat plate of semi-infinite extent by forced
convection and solved the conjugated problem ana-
Iytically assuming constant velocities in the momen-
tum boundary layer and a linear temperature profile
for the thin plate. Karvinen [2] used the integral
method to solve a problem similar to that considered
by Luikov and achieved good agreement with mea-
sured data. Sparrow e? al. [3] examined experimentally
fluid flow and heat transfer parameters for several
heated blocks (flat packs) in a cooling channel.
Braaten and Patankar {4] as well as Incropera et al.
[5] considered a shrouded array of blocks using
numerical solution methods. Davalath and Bayazi-
toglu [6] analyzed numerically conjugate heat trans-
fer for two-dimensional, developing flow over several
heated blocks. Rizk and Kleinstreuer [7] studied
numerically forced convection cooling of a linear
array of heated blocks in open and porous material-
filled channels.

This paper considers steady laminar boundary-
layer type flow over the top surface of a block with a
constant volumetric heat source. The coupling
between the block and the fluid is through the
unknown block surface temperature which varies in
the axial direction. The boundary conditions con-
sidered at different surfaces of the block include: a

+ Author to whom all correspondence should be addressed.

constant temperature for the inlet side and isothermal
surface or constant wall heat flux for the exit side. Of
practical interest are the location and magnitude of
the highest temperature in the block, the temperature
rise of the coolant, the average heat transfer coefficient
and the thermal penetration depth.

2. MATHEMATICAL FORMULATION

Conjugated steady conduction-convection heat
transfer from a rectangular block with volumetric heat
source to a free stream as illustrated in Fig. 1 is con-
sidered. The temperature fields in these two regions
are coupled via compatibility conditions at the wall-
fluid interface which include the continuity of tem-
perature and heat flux at the interface. The axial and
normal velocity components, u and v, are assumed to
be constant, with |v/u] « 1. Thus, the model rep-
resents thermal boundary-layer type flow past the sur-
face of the heated block with a (small) mass flux
normal to the block surface. The mathematical for-
mulation of the problem for conduction in the block,
forced convection flow heat transfer and the inter-
facial conditions are now given.

2.1. Conduction inside block
The steady two-dimensional temperature field ¥ in
the block with energy source is governed by

%}ﬁ'+§7‘f+%—=o, O<f<Il, —I<p<0
(1a)

subject to the boundary conditions
y=T, at £=0, —/<P<0 (1b)
Zﬁ:o or =T, at £=1, ~I<$<0
(Ic)
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NOMENCLATURE
A aspect ratio, //L T fluid temperature [K] ‘
f(x) nondimensional wall-fluid interface u v horizontal and vertical velocity
temperature components [ms™ ']
g heat generation rate [Wm™?] X, P dimensional coordinates [m]
K solid thermal conductivity [Wm~ 'K~ '] x, y,y* dimensionless coordinates
ke fluid thermal conductivity [Wm 'K~ '] X,.(x) eigenfunctions.
k* dimensionless conductivity ratio, &,/k,
I block height [m]
L block length [m]
N, normalization integral Greek symbols
Nu Nusselt number a thermal diffusivity [m* s~ ']
Pe Peclet number, ul/x B, eigenvalues
G.(X) dimensional upper block heat flow rate ¥ velocity ratio, |u/v}
[W] Sn dimensional penetration depth [m]
¢.(x) nondimensional heat flux at the O dimensionless penetration depth, &,,/L
interface, gk,/lgk, 0y Kronecker delta
t dimensionless fluid temperature, 0 dimensionless block temperature,
(T—Ty)/(ILg/k,) (¥ —To)/(ILg/k,)
T, ambient temperature [K]} W block temperature [K].
and (2{)—20 or 0=0 at x=1 (3¢)
o ) ) ax
»(3?:0 at _}'z—l, 0y, (ld) and
The boundary condition at the block—fluid interface ff()i —0 . % \
. T . . —— = at y* = 4. (3d)
along y = 0 is given in Section 2.3. ay*

Introducing the following dimensionless variables :

0= -—-T,)/(Lgik;), x=2%/L, y*= —J/L
l
and A4 = 7 (2a—d)
the system (1) takes the form
026 8%
L2+T—;V+A' '=0, 0<x<l1, O0<y*<4
ox ay**
(3a)
where
=0 at x=0 (3b)
Y

Fluid Temperature
v
L

Wall-fluid Interface

Isothermal
or Insulated
Wall

FiG. 1. System sketch with coordinates.

2.2. Forced convection over block surface

The steady two-dimensional energy equation for
forced convection of a constant property fluid is taken
as

u (;Z + v (;; =0 Z},T x>0, >0 (4a)
subject to the boundary conditions
T=T, at x=0 (4b)
and
T->T, as y— . (4¢)

The condition at the solid surface along y = 0 is given
in Section 2.3.

This forced convection problem (4) can be ex-
pressed in dimensionless form as

ot ot 1 8%t

R Bl p—— x> O > O 5'
ax -H’ 8}’ Pe ﬁyz s X , ( d)
t=0 at x=0 (5b)
! — 0 as }: — O (SC)

where the dimensionless quantities are defined as

, T-T, v p ul
= y=-, Pe=
(Lgik)™ ' u x
x=2X/L and y=yp/L. (b6a-e)
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2.3. Interfacial conditions

The conduction-convection problem defined in
equations (3) and (5) are coupled at the wall-fluid
interface by the requirement of continuity of tem-
perature and heat flux along y = 0. Thus

W _ T
o oy

and $§=0, 0<t<L (7a,b)

=T and -k

or in dimensionless form

d=tr=f(x) (8a)
and
00 ot
* = = y¥ = 1
= oy at y=y 0, 0<xx (8b)
where
k
* _ 8
k K (8¢)

The function f(x), introduced here for convenience
in the subsequent analysis, represents the unknown
dimensionless temperature along the wall-fluid inter-
face.

The systems defined by equations (3) and (5),
coupled through the interface condition given by
equation (8), constitute a conjugate heat transfer
problem which is solved analytically.

3. PROBLEM SOLUTION

Using the integral transform technique, the solution
of the conduction problem defined by equation (3) is
readily obtained as [8] :

< X,(x) cosh(B,(4-y*)

0y = X NG cosh (BA)
! N - I, (m)
[ $rsr gt

where X,,(x), §,, and N,, are, respectively, the eigen-
functions, eigenvalues and normalization integrals of
the associated eigenvalue problem. The integral /,(m)
is defined by

(9b)

x:l (10)

the energy equation (5a) for forced convection is
transformed to

I (m) = f} X, (x) dx'.

Using the transformation [8]

Pe v? Pe
1(x,y) = w(x, y) exp [L"y—- !

2 4
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dw 1 0w

—6;6'—-};&?:0, x>0, y>0 (lla)

and the boundary conditions (5b), (5¢) and the inter-
face condition (8a) are, respectively, transformed to

x=0 (11b)
(11¢)

wix,y) =0 at
wix,») >0 as y-— 0

and

2

= P
W) = £ exp [ i

)f] at y=0. (11d)

The forced convection problem defined by equa-
tion (11) is solved by the application of Duhamel’s
theorem to yield

2 vy Pe | [ y? Pe
e = e P [ 2 ]J;\M.‘/Pc«) {f (x 4n’ )
2.2 2
vy y* Pe )
X exp [—rf — W]}dn (12)

where # is an integration variable.

The solutions given by equation (9) for the con-
duction problem and equation (12) for the convection
problem are coupled through the unknown interfacial
temperature f(x). The application of the interface
condition

Oy

. 0

ay*

(13)

p=0 =0

yields the following Fredholm type integral equation
for the determination of f(x):

Pe % = ﬁm
}r?f(x) = —k Z Fmtanh (B..4)

m=1

-X,,,(x>[ f X f ) v - [;,EZ)] (14

where X,,(x) are the eigenfunctions, B,, are the eigen-
values, and N,, are the normalization integrals associ-
ated with the eigenvalue problem considered. Here
we use the Pincherle-Goursat technique to solve this
Fredholm type integral equation as outlined on pp.
55-64 of Tricomi [9].

We let

i
C = j X (x) f(x)dx'. (15a)

0

For the problem considered here we have

X (x) = sin(f,,x) (15b)

i
v= 2 (15¢)

and



mn o
— for =0 at x=1;
2 éx
B = m=1,3.5.... (13d.e)
mn for O0=0 at x=1:
m=1.2.3 ...
Inserting equation (14) into {15a) yields
2K% LB, /1 (m)
Co= e tanh (f,, 4 L O LY B ]
! } P’ ; /V /m ){ /},,,A C”, I_(in~.1)
(16a)
where the integral /,(m, j) is defined by
) ’ 0 m#j
Iy(m. j) = J X)X, (1) dx = { " /’ (16b)
0 2 1=

and the integral /,(m), defined by equation (9b). takes
the form

I—cos (ﬁm )

}
Limy =] X, (x)dy =- - o
1 {m) J:‘ (XY dx i

Relation (16a) must hold for each value of m. Then,
we have to solve the problem

(16¢)

z é}liicviil+ z 'Ajmcm = Z D/‘m {]73)
=1 m—1 [EE
where
2 k* )
A.fm = v P; ﬁ ﬁm tdnh (ﬁmA) 'Ig(m,‘}) (I7b)
2 k* Imy
D,, = 3, tanh Ay = Dhym, j
i o N B, tanh (8, 4) 5 Iy (m, j) (170)
and
0 for f
O = or #f (17d)
I for m=]j.

Invoking the orthogonality property of the integral
I, (m, j), equation (17) is reduced to a set of decoupled
algebraic equations

(,A EEn "’L I }Cm = Dmm (] 7C)
which yields the desired coefficients
b tanh (4 hm)
ﬁmA o
C, = o (18)
28, tanh (8, A+ kk*?

The block temperature given by equation {9a) can
be rewritten in the form

A cosh (f,(4—3*))
O(e,p*) =2 3 sin (B,,%) co(fh (B A) )

nr=1

* {:Cm

B (m)

= ﬁm (19)

1»(??)
Ap }‘Lz,ﬂz‘ sin (o)
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whereas the block-fluid interface temperature be-
comes

fx)=23%.C,sin(f,x)

|

(20)

and the fluid temperature takes on the form

) 4 ¥ Pe *
Hx,y) = - exp 1exp k~;§
v 'H “ oy {4 Pey

17 Pet e p(,)'
— R
]6[}’ ) ”; C m sin tﬁm( ” ) '} dﬂ (- 1 )

Once the coeflicients €, are known from equation
(18), various quantities of practical interest can be
determined from their definitions. For example, the
dimensionless local heat flux at the interface is given
by

Gutx) =2 o) = X C,sin(B,x3 (22)

3;\*
where

4w (X)

([‘w(x) = (}f

with ¢, (%) being the heat transfer rate across the inter-
face. The average heat flux can be computed as

1

{Zw = \} f{w(’f)d\ - Z(m[ ("l) (23)
The Jocal Nusselt number is given by
Nu = 1y Pe. (24)

In order to obtain an estimate for the thermal pene-
tration depth, we let

t] 505, — 0.003 {(25)
which is used to estimate d,, = &,/ L. This is a suitable
parameter for determining the appropriate cooling
channel width formed by electronic circuit boards for
cquipment ; or spacings between hot blocks of metal,
ceramic, or glass to be cooled on conveyor belts.

4. RESULTS AND DISCUSSION

The foregoing analytic solutions are used to exam-
ine the effects of various parameters such as the Peclet
number, velocity ratio, thermal wall conditions and
the thermal conductivity ratio on the block surface
temperature, surface heat flux and the penetration
depth. Thus, the parameters Pe, v/u and ki /k, arc
lumped into a dimensionless group, Pe y/k™ ; the ther-
mal side wall conditions are prescribed as § =0 at
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F1G. 2. Interface temperature distributions for different ther-
mal side wall conditions and lumped system parameters.

x=0and f = Qordf/ox = 0at x = 1. The results are
summarized in Figs. 2-5(b).

Figure 2 depicts various interfacial or block surface
temperature profiles for different group numbers and
thermal exit wall conditions. The surface temperature
increases as (Pry)/k* decreases, because less heat is
carried away when Pe, y or k; are lowered or k, is
increased.

The maximum thermal boundary layer thickness or
thermal penetration depth is of interest for design
purposes. Figures 3(a) and (b) show 8y, = dy/L as a
function of log(Pe) for different y=v/u and
k* = k /k; and with constant side wall temperature
{0 = 0) or constant heat flux condition (06/0x = 0).
As expected, the thermal penetration depth decreases
rapidly with higher Peclet numbers, Pe = Re Pr,
because the boundary layer becomes thinner with

045'1
044
]
é‘« = [sothermal wall gt x = [; W= 0.0t
g Isothermol wall ot x={, WU=01
g ~8— Insulaled wall ot x = 5 VAU=00!
g 0.3 Insulated wall ot x= §; WU=03
i
]
Q.
-
a 024
£
2
[
Qi
¢} T —
15 25 35

Log Pactet Number

Fi1G. 3(a). Thermal penetration depths vs Peclet number for
different velocity ratios and thermal side wall conditions
(ko fke = 1.0).

1523
051
—p— Isothermal woll ot x=1, W00l
—a— Isothermal wall atx =} ¥/U=01
. & —8— Insutgted woll ¢t x = 1; WU =00!
A —a— Insuloted woll at x = ; WU =0.1
=
B
@
[
g 03
8
<]
pel
|5
T 624
o
E
£
®
=
[~
0ol
¢] L T
15 25 35

Log Peclet Number

Fi1G. 3(b). Thermal penetration depths vs Peclet number for
different velocity ratios and thermal side wall conditions
(k. ke = 10).

larger Reynolds numbers. Both a stronger transverse
velocity component and the insulated end wall con-
dition generate higher penetration depths; however,
the type of thermal wall condition has only a marginal
effect on &y, (cf. Fig. 3(a)). A higher k*-value shifis
the &,-log(Pe) curves disproportionally upwards,
reflecting the nonlinear coupling effect between the
fluid conductivity and the vertical velocity component
(cf. Fig. 3(b)).

Figures 4(a) and (b) show the surface average heat
flux, g, as a function of log (Pe) for different velocity
ratios, thermal boundary conditions and conductivity
ratios. The adiabatic exit wall condition causes higher
block surface heat fluxes because of the higher inter-
facial temperatures (cf. Fig. 2). The mean surface heat

039 ~=#  Ingulated woll ot x = £ V/U=0.0f
—o— Inwiated wall olx = I;V/U=0.]
—e— [sathermal wall at x» 1;V/U =0.0i
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®
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F1G. 4(a). Average interface heat flux vs Peclet number for
different velocity ratios and thermal side wall conditions
(k. k= 1.0).
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FiG. 4(b). Average interface heat flux vs Peclet number for
different velocity ratios and thermal side wall conditions
(khy = 10).

FiG. 5(a). Block and fluid temperature contours for iso-
thermal surface conditions at x = 0 and 1.

FiG. 5(b). Block and fluid temperature contours for iso-
thermal surface conditions at x = 0 and insulated wall con-
dition at v = 1.
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flux increases significantly with increasing con-
ductivity ratios (cf. Figs. 4(a) and (b)), and at larger
k*-values the effects of the Peclet number and velocity
ratio are more pronounced.

Tempcrature contours for the case of isothermal
block surfaces are shown in Fig. 5(a). The block iso-
therms are slightly asymmetric because of the mild
cooling effect of the convective stream. In contrast,
Fig. 5(b) depicts the effect of one-sided wall
insulation, a possible worst-case scenario for cooling
of multiple, closely-spaced blocks [10]. In this case the
block and fluid temperatures are higher than in Fig.
5(a). reaching a maximum at the end of the block
(x = 1.0). As a result, the thermal penetration depth
for the insulated block is greater (8 = 0.35) than under
the isothermal wall condition (0 = 0.25).
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L

SOLUTION ANALYTIQUE DU PROBLEME DE TRANSFERT THERMIQUE CONJUGUE
POUR UN ECOULEMENT AUTOUR D’UN BLOC CHAUFFE

Résumé—Une solution analytique est développée pour le transfert thermique laminaire conjugué pour un

bloc rectangulaire ayant une source interne constante et étant soumis 4 la convection forcée sur le sommet,

4 différentes conditions thermiques sur les cotés et a une condition de paroi adiabatique sur la base. La

solution du probléme idéalisé est intéressante pour I'analyse du refroidissement d'un bloc unique. Les

résultats numériques présentés illustrent les effets du nombre de Péclet, du rapport des conductivités et du

type de conditions thermiques aux limites sur les profils de température et les distributions du flux thermique
le long de la surface supérieure du bloc.
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_ ANALYTISCHE LOSUNG FUR DAS PROBLEM DES KONJUGIERTEN
WARMEUBERGANGS AN DER RUCKSEITE EINES UMSTROMTEN BEHEIZTEN BLOCKES

Zusammenfassung—Fir den stationdren laminaren zweidimensionalen konjugierten Wirmeiibergang aus
einem rechteckigen Block mit konstanter innerer Wirmequelle wird eine analytische Losung entwickelt.
Die Oberseite des Blockes ist einer erzwungenen Anstromung ausgesetzt, an den Seiten herrschen unter-
schiedliche thermische Randbedingungen, und die Unterseite ist adiabat. Die Losung dieses idealisierten
Problems ist fiir die grundlegende Untersuchung der Kiihlung eines Einzelblockes von Bedeutung. Die
vorgelegten Ergebnisse numerischer Berechnungen zeigen den EinfluB der Peclet-Zahl, des Verhiltnisses
der Wirmeleitfahigkeiten sowie der Art der thermischen Randbedingung auf die Temperaturprofile und
die Verteilungen der Warmestromdichte an der oberen Deckfliche des Blockes.

AHAJIUTUYECKOE PEMIEHUE COMNPSXKEHHOM 3AJAYH TEIUIOITEPEHOCA TIPU
OBTEKAHUH HATPETOI'O BJIOKA

Amnoramms—ITosy4eHO aHATMTHYECKOE PELICHHE 3a[a4M CTAMHOHAPHOTO ABYMEPHOTO B3aHMOCBSA3aH-
HOI'0 TEILIONEePeHoca IS IAMHHAPHOTO TEYEHMS B IPAMOYTOJILHOM GJI0KE C IOCTOSHHBLIM BHYTPEHHHM
HCTOYHHKOM B CJiyJac BBIHYXCHHOH KOHBEKLMH Y BepXHeHl NMOBEPXHOCTH, KOT[a Ha GOKOBLIX TOBEPX-
HOCTSX BBINOJHAIOTCH Pa3jiHyHbie TEIUIOBbIC TPAHHYHbIE YCIIOBHUS,  OCHOBAHME SBJISETCH ajiMabaTHyec-
kuM. Miaeanus3npoBaHHOe peleHHE 3aJavM MPECTABJIAET MHTEpEC Ul aHANIW3a OXJaXIACHHS
eIMHHYHOTO G6Jioka. IloJTydueHHbIE YMCJICHHBIE DPe3YJbTATHI WUIIOCTPUPYIOT BJHAHHME uucia Ilekie,
OTHOIUAHHE TENJIOMPOBOAHCTEH M THNA TEIUIOBBIX IPAHMYHBLIX YCIOBMH Ha OPOGWIM TeMIepatyp u
pacrpezie/ieHHs TEIUIOBRIX MOTOKOB Ha BEPXHei NoBepXHOCTH 610Ka.
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