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Abstract-An analytic solution has been developed for steady laminar two-dimensional conjugated heat 
transfer across a rectangular block with constant internal heat source and subjected to forced convection 
on top, different thermal boundary conditions at the sides, and adiabatic wall condition at the bottom. 
The idealized problem solution is of interest in the basic analysis of single-block cooling. Numerical results 
presented illustrate the effects of the Peclet number, conductivity ratio and type of thermal boundary 

condition on the temperature profiles and heat flux distributions along the upper surface of the block. 

1. INTRODUCTION 

Tm PROBLEM of heat transfer from a heated block 
subjected to convective cooling at its upper sur- 
face is of interest in numerous engineering applica- 
tions including electronic equipment cooling, heat 
exchangers, material processing and thermal building 
assessment. A number of relevant papers employing 
analytic or approximate methods have been published 
in recent years [l-7]. Luikov [l] considered heating 
of a thin flat plate of semi-infinite extent by forced 
convection and solved the conjugated problem ana- 
lytically assuming constant velocities in the momen- 
tum boundary layer and a linear temperature profile 
for the thin plate. Karvinen [2] used the integral 
method to solve a problem similar to that considered 
by Luikov and achieved good agreement with mea- 
sured data. Sparrow et al. [3] examined experimentally 
fluid flow and heat transfer parameters for several 
heated blocks (flat packs) in a cooling channel. 
Bra&en and Patankar [4] as well as Incropera et al. 
[S] considered a shrouded array of blocks using 
numerical solution methods. Davalath and Bayazi- 
toglu [6] analyzed numerically conjugate heat trans- 
fer for two-dimensional, developing flow over several 
heated blocks. Rizk and Kleinstreuer [7] studied 
numerically forced convection cooling of a linear 
array of heated blocks in open and porous material- 
filled channels. 

This paper considers steady laminar boundary- 
layer type flow over the top surface of a block with a 
constant volumetric heat source. The coupling 
between the block and the fluid is through the 
unknown block surface temperature which varies in 
the axial direction. The boundary conditions con- 
sidered at different surfaces of the block include: a 
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constant tem~rature for the inlet side and isothermal 
surface or constant wall heat flux for the exit side. Of 
practical interest are the location and magnitude of 
the highest temperature in the block, the temperature 
rise of the coolant, the average heat transfer coefficient 
and the thermal penetration depth. 

2. MATHEMATiCAL FORMULATION 

Conjugated steady conduction-convection heat 
transfer from a rectangular block with volumetric heat 
source to a free stream as illustrated in Fig. 1 is con- 
sidered. The temperature fields in these two regions 
are coupled via compatibility conditions at the wall- 
fluid interface which include the continuity of tem- 
perature and heat flux at the interface. The axial and 
normal velocity components, u and u, are assumed to 
be constant, with ]u/u] << 1. Thus, the model rep- 
resents thermat boundary-Iayer type II ow past the sur- 
face of the heated block with a (small) mass flux 
normal to the block surface. The mathematical for- 
mulation of the problem for conduction in the block, 
forced convection flow heat transfer and the inter- 
facial conditions are now given. 

2.1. confection inside block 
The steady two-dimensional temperature field $ in 

the block with energy source is governed by 

av a** 9 
j-g+-‘+7;-=0, O<i<L, -1<p<o 

aY s 

subject to the boundary conditions 

ti = To at P = 0, -1<p<o (lb) 

ail/ ==O or jt=T, at Z=L, -I<$&0 

UC) 
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NOMENCLATURE 

A aspect ratio, I/L T fluid temperature [K] 

.f’(x) nondimensional wall-fluid interface u, C horizontal and vertical velocity 
temperature components [m so- ‘1 

9 heat generation rate [W rn-- ‘1 a,): dimensional coordinates [m] 

k, solid thermal conductivity [W m ’ Km ‘1 .~,_r, r* dimensionless coordinates 

k,. fluid thermal conductivity [W m ’ K ‘1 X,,(x) eigenfunctions. 
k* dimensionless conductivity ratio, k.,/k, 
I block height [m] 
L block length [m] 

N, normalization integral Greek symbols 
Nl.4 Nusselt number thermal diffusivity [m’ s ‘1 
Pe Peclet number, ML/SC ;,., eigenvalues 
&(.C) dimensional upper block heat flow rate velocity ratio, ]u/v] 

WI it,, dimensional penetration depth [m] 
q,(x) nondimensional heat flux at the 6 th dimensionless penetration depth, Jt,/L 

interface, ik,/lgkr 61, Kronecker delta 
t dimensionless fluid temperature. 0 dimensionless block temperature, 

(T- T,)l(Qlk,) (+ - T,)l(Qlk,) 
TX ambient temperature [K] * block temperature [K]. 

and 

w -~-=Cj at $=-I, O<.p<L. 
aj (Id) and 

The boundary condition at the block-fluid interface 
along j = 0 is given in Section 2.3. 

UC) 

(3d) 

Introducing the following dimensionless variables : 

Q = (tj-T,)/(lLg/k,), x = a/L, y* = -Ji/L 
2.2. Forced convection over block surface 

The steady two-dimensional energy equation for 
forced convection of a constant property fluid is taken 

and A = i (2aad) as 

the system (1) takes the form (77‘ i?T Ci’T 
u i_i+” q=“,$. f-0, .C>o (4a) 

820 i?*c1 (‘I 
s+;v’i+A~‘=O. O<x<l, O<y*<A subject to the boundary conditions 

where 

@a) T = T,, at .t = 0 (4b) 

and 

0 = 0 at .Y = 0 (3b) 
(4c) 

The condition at the solid surface along 9 = 0 is given 
in Section 2.3. 

This forced convection problem (4) can be ex- 
pressed in dimensionless form as 

FIG. I, System sketch with coordinates. 

t=O at x=0 (5b) 

r-r0 as r-f”, (5Cl 

where the dimensionless quantities are defined as 

x = .?/L and _r = q/L. (6a-e) 



2.3. interfacial conditions 
The conduction-convection problem defined in 

aw 1 a2w -- 
i3X 

-1=0, x>O, y>O (Ila) 
Pe ay 

equations (3) and (5) are coupled at the wall-fluid 
interface by the requirement of continuity of tem- and the boundary conditions (Sb), (SC) and the inter- 

perature and heat flux along y = 0. Thus face condition @a) are, respectively, transformed to 

w(x,y) = 0 at .x = 0 (1 tb) 

lV(X, y) + 0 as y-+m (1 lc) 

and p=O, O<.?-<L (7a,b) 

or in dimensionless form 

@ = t = f(x) 

and 

y2 Pe x 

(84 w(x, y) = f’(x) exp 1 1 4- at y=O. (Ild) 

The forced convection problem defined by equa- 

k*g=$ at y=y*=O, O<x<l (gb) 
tion (11) is solved by the application of Duhamel’s 
theorem to yield 

where 

k*+ 
f 

The function f(x), introduced here for convenience 
in the subsequent analysis, represents the unknown 
dimensionless tem~rature along the wall~fluid inter- 

where ? is an integration variable. 

face. 
The solutions given by equation (9) for the con- 

The systems defined by equations (3) and (5), 
duction problem and equation (12) for the convection 

coupled through the interface condition given by 
problem are coupled through the unknown interfacial 

equation (8), constitute a conjugate heat transfer 
temperature f(x). The application of the interface 

problem which is solved analytically. 
condition 

(13) 
3. PROBLEM SOLUTION 

Using the integral transform technique, the solution yields the following Fredholm type integral equation 
of the conduction problem defined by equation (3) is for the determination off(x) : 
readily obtained as [8] : 

1~ $ f(x) = -k* f’ $ tanh (&,A) 
In=, m 

- xm 64 
[S 

’ X,(x’)J’(n’) dx’ - ’ 
0 

‘,!“d’ (14) 
m I 

where X,(x} are the eigenfunctjons, /z$, are the eigen- 
values, and NM are the normalization integrals associ- 
ated with the eigenvalue problem considered. Here 

where X,(x), pm and N, are, respectively, the eigen- 
we use the Pincherle-Goursat technique to solve this 

functions, eigenvalues and normalization integrals of 
Fredholm type integral equation as outlined on pp. 

the associated eigenvalue problem. The integral I,(m) 
55-64 of Tricomi 191. 

is defined by 
We let 

s 

1 
1, (m) = X, (x’) dx’. (Yb) 

C, = ’ X,(x’)J’(x’) dx’. (Isa) 
0 

Using the transformation [8] For the problem considered here we have 

t(x,y) = w(x,..v)exp 
i 

ype ,u,2 Fe X,(x) = sin (&x) (15b) 
my-- 4x 

1 
(10) I 

-_=2 
N WC) 

the energy equation (5a) for forced convection is 
transformed to and 
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h, = 

i 

1ilz= 1,3.5.... (l5d.C) 

wm for 0 = 0 at .\r = I : 

IFI = I ’ 1 . _. , 

Inserting equation (14) into (ISa) yields 

whereas the block--l&id interface temperature be- 
COlllCS 

f‘(x) = 2 1, c,,, sin (ji,,,.V) (20) 
‘ii I 

and the fluid temperature takes on the form 

(Iha) 

where the integral r,(m,j) is defined by 

/~(/?Z,,j) = S’ X,(.u’)X,,,(x’) d.y’ = i 0 111 f .j 
116b) 

0 ! m = ,j 

and the integral I,@!), defined by equation (9b), takes 
the form 

I,(i?l) = 

1’ 

1 - cos (l;,,, ) 
k;,,(.\-') d-\-' = /j,,, , ( I 6C) 

/I 

Relation (I 6a) must hold for each value ofm. Then, 
we have to solve the problem 

where 

and 

(S,,,, = 
0 for nz # j 

1 for III = i. 
(l7d) 

Invoking the orthogonality property of the integral 
Iz(tn, j), equation (17) is reduced to a set of decoupled 
algebraic equations 

(A,,,,,, + 1 K,,, = Q,,,e, 

which yields the desired coefficients 

(17e) 

The block temperature given by equation @a) can 
be rewritten in the form 

Once the coetficients C’!,, are known from equation 
(18), various quantities of practical interest can bo 
determined from their definitions. For example, the 
dimensionless local heat flux at the interface is given 

by 

whcrc 

with G,(.<) being the heat transfer rate across the inter- 
fact. The average heat flux can be computed as 

The Iocai Nusselt number is given by 

In order to obtain an estimate for the thermal pcnc- 

t&on depth, we let 

which is used to estimate 6,,, = &;L. This is a suitable 
parameter for determining the appropriate cooling 
channel width formed by electronic circuit boards for 
equipment ; or spacings between hot blocks of metal. 
ceramic. or glass to be cooled on conveyor belts. 

4. RESULTS AND DISCUSSION 

The foregoing analytic solutions are used to exam- 
ine the elects of various parameters such as the Pecfct 
number, velocity ratio, thermal wall conditions and 
the thermal conductivity ratio on the block sur&ce 
temperature, surface heat flux and the penetration 
depth. Thus, the parameters PC, r,:‘~t and k,-ik, arc 
lumped into a dimensionless group, Pcy/‘k* ; the ther- 
mal side wall conditions are prescribed as 0 = 0 at 
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lnsuloted watt ot X’li P&/u/u*. 1.4 
1sowmt tit at x * t; PeV/U/K*= 1.4 

Insulated watt at x = I; PeV/UIIc* =0.7 
irpthermt wcxtt at x = I; Pev/v/KI = 0.7 

0 0.2 0.4 06 0.8 IO 

Hock Surface 

FIG. 2. Interface temperature distributions for different ther- 
mal side wall conditions and lumped system parameters. 

x=OandB=Oora#jax=Oatx= i.Theresultsare 
summarized in Figs. 2-5(b). 

Figure 2 depicts various interfacial or block surface 
temperature profiles for different group numbers and 
thermal exit wall conditions. The surface temperature 
increases as (Pr y)/k* decreases, because less heat is 
carried away when Pe, y or kf are lowered or k, is 
increased. 

The maximum thermal boundary layer thickness or 
thermal penetration depth is of interest for design 
purposes. Figures 3(a) and (b) show S,, = &,/L as a 
function of log(&) for different y = v/u and 
k* = k,/k, and with constant side wall temperature 
(0 = 0) or constant heat flux condition @B/ax = 0). 
As expected, the thermal penetration depth decreases 
rapidly with higher Peclet numbers, Pe = Re Pr, 
because the boundary layer becomes thinner with 

- rsdhermat watt at x = I;v/v= o.of 
- $5#the~i wou dx-t;V/U=Ql 
- rmutated watt at x 3 I; vnt~oai 
- rrsutated Walt at X’ I; VN=O.i 

2.5 

Log Peclet Number 

1 
35 

FIG. 3(a). Thermal penetration depths vs Peclet number for FIG. 4(a). Average interface heat flux vs Peclet number for 
different velocity ratios and thermal side wall conditions different velocity ratios and thermal side wall conditions 

(k,/k, = 1.0). (k,/k, = 1.0). 
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04 
vd 0t x = 1, k! = 0.01 

In*“toted wou ot i = I; v/u =O.l 
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FIG. 3(b). Thermal penetration depths vs Peclet number for 
different velocity ratios and thermal side wall conditions 

(k,[k, = IO). 

larger Reynolds numbers. Both a stronger transverse 
velocity component and the insulated end wall con- 
dition generate higher penetration depths; however, 
the type of thermal wall condition has only a marginal 
effect on 6,, (cf. Fig. 3(a)). A higher k*-value shifts 
the &,-log (Pe) curves disproportionally upwards, 
reflecting the nonlinear coupling effect between the 
fluid conductivity and the vertical velocity component 
(cf. Fig. 3(b)). 

Figures 4(a) and (b) show the surface average heat 
flux, & as a function of log (Pe) for different velocity 
ratios, thermal boundary conditions and conductivity 
ratios. The adiabatic exit wail condition causes higher 
block surface heat fluxes because of the higher inter- 
facial temperatures (cf. Fig. 2). The mean surface heat 

0. 
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-Y- Insdated walk ot x = I , V/U = 0 01 

- Insubted woki ot x = I, “,“=O,I 

- Isothermal watt et x = I* v/u LO 01 
- Isothermot WON ot x = I, “/ii -0 / 
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FIG. 4(b). Average interface heat flux vs Peclet number for 
different velocity ratios and thermal side wall conditions 

(~,A-,- = IO). 

FG, 5(a). Block and Auid tempe~dture contours for iso- 
thermal surface conditions at s = 0 and 1. 

FIG. 5(b). Block and fluid temperature contours fnr iso- 
thermal surface conditions at I = 0 and insulated wall con- 

dition at .v = I 

flux increases significantly with increasing con- 

ductivity ratios (cf. Figs. 4(a) and (b)). and at larger 
k*-values the effects of the Peclet number and velocity 
ratio are more pronounced. 

Tcmpcrature contours for the case of isothermal 
block surfaces are shown in Fig. 5(u). The block iso- 
therms are slightly asymmetric because of the mild 

cooling effect of the convective stream. In contrast, 
Fig. 5(b) depicts the cf&ct of one-sided wall 
insulation. a possible worst-case scenario for cooling 
of muitiplc. closely-spaced blocks [IO]. In this case the 

block and fluid temperatures are higher than in Fig. 
5(a). reaching a maximum at the end of the block 
(.Y = 1.0). As a result. the thcrmai penetration depth 
for the insulated block is greater (6 = 0.35) than under 
the isothermal wall condition ((i = c).?5). 
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SOLUT‘ION ANALYTIQUE DU PROBLEME DE TRANSFERT T~ERMIQUE CONJUCUE 
POUR UN ECOULEMENT AUTOUR D’UN BLOC CHAUFFE 

R&sum&Une solution analytique est d&elopp&e pour le transfert thermique laminaire conjug& pour un 
bloc rectangulaire ayant une source interne constante et ttant soumis g la convection for&e sur le sommet. 
i diffkrentes conditions thermiques sur les cot&s et B une condition de paroi adiabatique SW la base. La 
solution du probl&me id&al&& est inGressante pour l’analyse du refroidissement d’un bloc unique. Les 
r&s&tats num~~ques p&en% illustrent les effets du nombre de Pkclet, du rapport des conducti~t~s et du 
type de conditions thermiques aux limites sur les profils de tempkrature et les distribptions du flux thermique 

le long de la surface supitrieure du bloc. 
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ANALYTISCHE LOSUNG FUR DAS PROBLEM DES KONJUGIERTEN 
WARMEUBERGANGS AN DER RUCKSEITE EINES UMSTROMTEN BEHEIZTEN BLOCKES 

Zusammenfassung-Fiir den stationlren laminaren zweidimensionalen konjugierten Warmeiibergang aus 
einem rechteckigen Block mit konstanter innerer Wlrmequelle wird eine analytische Losung entwickelt. 
Die Oberseite des Blockes ist einer erzwungenen Anstriimung ausgesetzt, an den Seiten herrschen unter- 
schiedliche thermische Randbedingungen, und die Unterseite ist adiabat. Die Losung dieses idealisierten 
Problems ist fur die grundlegende Untersuchung der Kiihlung eines Einzelblockes von Bedeutung. Die 
vorgelegten Ergebnisse numerischer Berechnungen zeigen den EinfluD der Peclet-Zahl, des Verhaltnisses 
der Wlrmeleitfahigkeiten sowie der Art der thermischen Randbedingung auf die Temperaturprofile und 

die Verteilungen der Warmestromdichte an der oberen Deck&he des Blockes. 

AHAJIMTAYECKOE PEIBEHHE COI-IPRXEHHOH 3A&49H TEI-IJIOI-IEPEHOCA I-IPB 
OBTEKAHHH HAI-PETOI-O EJIOKA 

AtmoTawe_~ony~eHo arranrirmrecxoe pememie 3aAare crauriouaprroro nayh4epuoro a3ariMocaa3au- 
“Or0 TeIIJIOIIe&,CHOCa A_“,, AaMAHapHOrO Te’,eH,,ll B IIpKMOyrOAbHOM 6noxe C IIOCTORHHbIM BHyTPeHHHM 

BCTOWIHKOM B CAyYaC BbIHylKAeHHOii KOHBeKUBB y BepXHeii IIOBCPXHOCTH, KOrAa Ha 6OKOBUx UOBepX- 

HOCTKX BbIllOJIHREOTCK pa3JWiHbIe Te”JIOBbl‘2 rpaHHYHble yCJIOBHK, a OCHOBaHHe IlB,,,R?TC,, aaea6aruqec- 
toih4. Hneanw3aposarmoe pememre 3aAaqri npencrasnner mrrepec Ann amuni3a 0xna~enm-i 
‘ZABHWiHOrO 6norca. nOJtyqeHHbIe WiCJleHHbIe pe3yJIbTaTbI IlJIAlQCTp~pyEOT BJIUXHWC qricna nerne, 

0TtiomKHAe rennonpoeojurcreii B runa rennoabrx rpami~ubxx ycnosdi Ha npo+inri rebfneparyp II 
paCn~ACACHHKTenAOBblXnOTOKOBHaBCpXHeiinOBepXHOCTB6nOKa. 


